

Samuel Garcia

neo : a 100% code jam project!

History :
● Discussions started in Freiburg 2009 (codejam #3) : Pierre Y., Andrew D, Luc E., …
● Neo 0.1 release some mouth. Coded almost alone.
● Neo 0.1 presented in Marseille 2010 (codejam #4)
● And New discussion for neo 0.2 : Andrey S, Philipp R, Andrew D, Florent J, …
● Private code jam with new team in Gif at Andrew's lab last year.
● Released on feb 2012. neo 0.2
● Presentation Edinburgh 2012 (codemjam #5)

What is neo ?

neo.core = a simple and intuitive set on objects for representing electrophysiological
dataset in python.

neo.io = a common layer for reading/writing in the cacophony of file formats.

Goals ?

What are main interests :
● Interoperability between projects (g-node, pynn, OpenElectrophy, NeuroTools, ...)
● A 5 min. installable, multiplatfrom, and easy to play file reader.

Dependencies ?

Few = numpy and quantities
Optional for some IOs = pytables , scipy,

Equivalent project
● Neuroshare (ddl provide commercial)
● for neuro imaging: nibabel (python)

What is new ?

● new schema more consistent.
● new objects
● New IOs
● use the quantities module for everything that can have units.
● Python 3 support
● better tests
● Doc with better English grammar.

Class tour

Class tour: Concept

3 types of objects:
● Data objects : AnalogSignal, SpikeTrain, EventArray, EpochArray
● Containers objects : Block, Segment
● Grouping objects : RecordingChannel, RecordingChannelGroup, Unit (ex Neuron)

All object have 3 types of attributes:
● Required (AnalogSignal.sampling_rate, AnalogSignal.t_start, ...)
● Recommended (AnalogSignal.name, ...)
● Free in annotations dict:

SpikeTrain, AnalogSignal, and AnalogSIgnalArray inherits python-quantities:directly
behave like np.array with units.

Class tour: schema

Class tour : definition

AnalogSignal: A regular sampling of a continuous, analog signal.
AnalogSignalArray: A regular sampling of a multichannel continuous analog signal. (2D NumPy array)
Spike: One action potential characterized by its time and waveform.
SpikeTrain: A set of action potentials (spikes) emitted by the same unit in a period of time (with optional waveforms).
Event and EventArray: A time point representng an event in the data, or an array of such time points.
Epoch and EpochArray: An interval of time representing a period of time in the data, or an array of such intervals.

Segment: A container for heterogeneous discrete or continous data sharing a common clock (time basis)
but not necessarily the same sampling rate, start time or end time. A Segment can be considered as equivalent
 to a "trial", "episode", "run", "recording", etc., depending on the experimental context. May contain any of the data objects.
Block: The top-level container gathering all of the data, discrete and continuous, for a given recording session.
 Contains Segment and RecordingChannelGroup objects.

RecordingChannelGroup: A group for associated RecordingChannel objects. This has several possible uses:
RecordingChannel objects of the same array.
Unit: A Unit gathers all the SpikeTrain objects within a common Block, possibly across several Segments,
that have been emitted by the same cell. A Unit is linked to RecordingChannelGroup objects from which it was detected.
This replaces the Neuron class in the previous version of Neo (v0.1).

Class tour : Use case

Class tour : Use case

IO tour

First interest to have same classes :
Same API to read/write data files.

All formats are really different so we need a flexible API:
● ABF = Block+Segment+AnalogSignal+Event
● Plexon = Segment+SpikeTrain+Spike+AnalogSignal
● PyNN = SpikeTrain+AnalogSignal
● RAW = AnalogSignal

What is this API ?
● For each format you have an IO class
● The IO class can read or write one or several neo objects.

IO : tour

IO tour : workflow

One class per format:

Different modes (file, dir, database, ...)

Examples

IO tour : workflow

Concept of readable/supported objects:

Class offer reading method for readable objects

All classes propose read() = read_block()

IO tour : workflow

Cascade option:

Lazy option:

Projects on top of neo

OpenElectrophy

Web portal for benchmarking spike sorting algorithm
At G-Node (Felix Franke, Andrey Slobodev)

New NeuroTools

Mozaik
PyNN

Conclusion

● If your project generate data : write an IO for neo

● If your project manage signals and spikes : provide an interface to neo objects

● If your experimentalist colleague wants to read data set from commercial systems: neo.io

Thanks to the the neo team

Samuel Garcia
Andrew Davison
Chris Rodgers
Pierre Yger
Yann Mahnoun
Luc Estabanez
Andrey Sobolev
Thierry Brizzi
Florent Jaillet
Philipp Rautenberg
Thomas Wachtler
Cyril Dejean

Thanks to Michael Hanke to make the very first debian package of my life.

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18

