
March 16, 2012 | Jochen Martin Eppler

BrainScaleS CodeJam #5, Edinburgh

M
it

g
lie

d
 d

e
r

H
e
lm

h
o
lt

z-
G

e
m

e
in

sc
h

a
ft

The NEST code generation
roadmap: rationale and methods

March 16, 2012 Slide 2

Outline

 Reasons for code generation

 The neural simulation tool NEST

 Problems with our current way of writing code

 State of code generation from lib9ML for NEST

 Performance considerations

 Open questions, outlook and discussion

March 16, 2012 Slide 3

”If syntactic sugar didn't count, we'd all be
programming in assembly language.“

C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost and
Beyond - David Abrahams, Aleksey Gurtovoy

March 16, 2012 Slide 4

Why do we need code generation?

 Driven by advances in neuroscience, our simulation software becomes
more and more complex

■ More neuron and synapse models with higher complexity

■ New modeling directions require more complex networks

■ Larger machines are required to simulate larger networks

 Programming languages with higher levels of abstraction are one
possibility to master the complexity

 Model descriptions (e.g. NineML, NeuroML) are another

 High-level descriptions should not have to be interpreted at run-time,
but should be compiled to or at least handed over to simulators

March 16, 2012 Slide 5

The neural simulation tool NEST

 NEST is a simulator for spiking neural networks

■ Distributed and multi-threaded simulation

■ Development driven by neuroscientific needs

 Neuron and synapse model types have to be written in C++

■ This requires users to know some internals of NEST

■ New models are often created from existing models

■ Custom models can be defined in modules and loaded at run-time

 The research focus shifts further towards large-scale simulations

March 16, 2012 Slide 6

Why model development in NEST is broken

 Neuron and synapse models are not simulator independent

 Updates of the internal API require changes in all standard models

■ This reduces maintainability and increases the risk of error

■ Most of the model code is boilerplate code

 NEST's architecture for coupling synapses and neurons only allows
one synapse to be in between

■ It is impossible to combine synapse types, even though the code
for the single types may be there

■ Code Generation allows a merge of multiple types

 Multiple code paths are currently defined in a single file using ifdefs

March 16, 2012 Slide 7

Python, PyNN, NineML and beyond

 With Python, the scientific community has a language with outstanding
readability and superior productivity (cf. Prechelt, 2000)

 With PyNN, the computational neuroscience has a solid tool for
specifying neural network models

 With NineML, a standard for neural network model descriptions is on
its way

 The next logical step is to generate implementations from high-level
model descriptions

 Code generation is the right step in this direction

March 16, 2012 Slide 8

Code generation

 Generative/automatic programming is all about bringing the benefits of
automation to software development

 Automatic code generation allows to write code faster, as only a high-
level description has to be provided

 Several approaches exist:

■ Generators

■ Computer-aided software engineering

■ Domain-specific languages

■ Metaprogramming (e.g. C++ templates)

March 16, 2012 Slide 9

Code generation

Manually implement

System
requirements

System source code
in general-purpose

language

System
implementation

Compile

System
requirements

System source code
in general-purpose

language

System
implementation

Manually implement

Compile

System source using
domain-specific

language

Compile

System
requirements

System source code
in general-purpose

language

System
implementation

Manually implement

Compile

System source using
domain-specific

language

Compile

High-level system
specification

Implement with interactive support

March 16, 2012 Slide 10

Code generation

 A generator is a program that takes a higher-level specification of a
piece of software and produces its implementation

 Different kinds of generators exist:

■ Written from scratch (e.g. using bash or Python). NEST already
uses this technique to write header files during configuration

■ Based on the metaprogramming facilities of a programming
language. NEST heavily uses C++ templates

■ Using a generator infrastructure. For example a user interface
designer

■ Using a template engine, which does text based replacements

March 16, 2012 Slide 11

Code generation

 Written from scratch

#! /bin/bash
echo "#include <iostream>"
echo "main() { std::cout << \"$1\" << std::endl; }"

 Using the metaprogramming facilities of a programming language

#include <iostream>
#include <string>
template <class T> T sum(T a, T b) { return a+b; }
main() {
 std::cout << sum(1.0, 2.0) << std::endl;
 std::cout << sum(1, 2) << std::endl;
}

March 16, 2012 Slide 12

Excursion to lib9ML

 lib9ML is a simulator independent object model describing the different
elements of network models

 Dynamics are described by a set of state variables, regimes and
transitions combined in a regime graph

March 16, 2012 Slide 13

State of lib9ML code generation for NEST

 A prototype for generating neuron models was provided by Eilif Muller

 Based on Cheetah, a text-based template engine for Python

 The notion of regimes and transitions maps nicely on how NEST likes
to see its neuron models

 Susanne Kunkel and Abigail Morrison changed the template for
neurons to make a compilable file for synapses

 For synapse models, the notion of regimes and transitions is a less
good match

■ Regimes are expressed as ODEs, which are time-driven

■ NEST thinks about synapse in an event-driven fashion

March 16, 2012 Slide 14

State of lib9ML code generation for NEST

 A prototype for generating neuron models was provided by Eilif Muller

 Based on Cheetah, a text-based template engine for Python

 The notion of regimes and transitions maps nicely on how NEST likes
to see its neuron models

 Susanne Kunkel and Abigail Morrison changed the template for
neurons to make a compilable file for synapses

 For synapse models, the notion of regimes and transitions is a less
good match

■ Regimes are expressed as ODEs, which are time-driven

■ NEST thinks about synapse in an event-driven fashion

March 16, 2012 Slide 15

State of lib9ML code generation for NEST

[Have a look at the templates]

March 16, 2012 Slide 16

State of lib9ML code generation for NEST

 Code generation still involves some manual steps

■ Creating the lib9ML description

■ Generating C++ code from the high-level description

■ Adding the code to MyModule

■ Dynamically load MyModule in NEST at run-time

 PyNEST needs functions to allow the user to specify models in a
convenient way

 A just-in-time compilation infrastructure is needed

March 16, 2012 Slide 17

Problems with lib9ML and text-based code generation

 lib9ML is simulator agnostic by design

 Things like syntax and type checks are only performed later in the
development cycle

 Decision for the right solvers can be hard, optimizations even harder

 Things like consistency and range checks for variables or variables
defined relative to each other are hard

 Implementation details (e.g. different buffers for inh./exc. Spikes)
cannot be expressed

 Searching for errors may become more complex as more levels of
software are involved

March 16, 2012 Slide 18

Benefits of using code generation

 Speed: C/C++ is (much) faster than Python or interpreting XML

 Usability: Writing Python/XML is easier than C/C++ (Prechelt, 2000)

 Reduce the boiler-plate code that has to be written for each model

 Reduce the error-prone-ness of the code

 Improve the maintainability of the code

 Does a high-level description without much annotation allow the
generation of optimal code at the level of machine code?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

